NAME

Module 11 Simplifying Algebraic Expressions with Polynomials

Lesson 1 Applying Rules of Exponents

$\overline{\text { DATE }}$

Lesson Objectives

- Apply the multiplication rule for exponents.
- Apply the division rule for exponents.
- Apply the definition of negative exponents.
- Apply the power-of-a-power rule.
- Apply the power-of-a-product rule.
- Apply the power-of-a-quotient rule.

The rules for exponents are used to \qquad exponential expressions.

Multiplication rule for exponents:
$a^{m} \cdot a^{n}=$ \qquad
$a \neq 0$

To use the multiplication rule for exponents the bases must be the same. If not,
the expression \qquad .

Division rule for exponents:
$\frac{a^{m}}{a^{n}}=$ \qquad
$a \neq 0$

Definition of negative exponents:

For a nonzero number a and a positive integer n, \qquad .
(1) Simplify: $4^{3} \cdot 4$
\qquad
(2) Simplify: $\frac{6^{2}}{6^{5}}$
© 2003 BestQuest \qquad

Power-of-a-power rule:
$\left(a^{m}\right)^{n}=$ \qquad
$a \neq 0$
Power-of-a-product rule:
$(a b)^{m}=$ \qquad
$a \neq 0, b \neq 0$
Power-of-a-quotient rule:
$\left(\frac{a}{b}\right)^{m}=$
$a \neq 0, b \neq 0$
(3) Simplify: $\left(4^{3}\right)^{0}$
(4) Simplify: $\left(3 y^{3}\right)^{2}$
(5) Simplify: $\left(\frac{4}{x}\right)^{3}$

