NAME

Module 1 Getting Ready for Algebra
Lesson 4 Simplifying Expressions with Exponents and Roots

DATE

guided notes

Lesson Objectives

- Simplify expressions of the form b^{n}, where n is a natural number and b is a rational number.
- Simplify square roots and cube roots.

An exponential expression takes the form b^{n}.
The expression b^{2} can be read as \qquad or
\qquad -.

The expression b^{3} can be read as \qquad or
\qquad _.

In this expression, b is the \qquad and n is the \qquad _.

To simplify b^{n}, use \qquad as a factor \qquad times.

The \qquad form of 3^{4} is $3 \cdot 3 \cdot 3 \cdot 3$.

For any real number b, except $b=0, b^{0}=$ \qquad —.
(1) Simplify: 4^{2}

Simplify: 3^{1}
\qquad
$(\text { negative })^{\text {even }}=$ \qquad
$(\text { negative })^{\text {odd }}=$ \qquad
(5) Determine the sign of $(-1)^{14}$, then simplify.

- The sign will be \qquad
- $(-1)^{14}=$ \qquad
(6.) Determine the sign of $\left(-\frac{1}{3}\right)^{3}$, then simplify.
- The sign will be \qquad
- $\left(-\frac{1}{3}\right)^{3}=$

The $\sqrt{ }$ symbol is called a \qquad sign.

The $\sqrt{ }$ symbol indicates the principle, or nonnegative, square root.
The symbol $\sqrt[3]{ }$ indicates the \qquad root.

(8) Simplify: $\sqrt[3]{27}=$

Simplify: $\sqrt[3]{-216}=$

