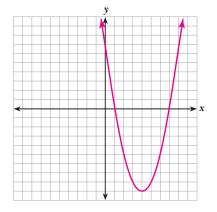
Module 14

Determine the direction each parabola opens by inspection.


- **2.** $y = (x + 3)^2 4$ **up 1.** $x = 2y^2$ **<u>right</u> 3.** $x = -5(y + 3)^2 - 4$ left **4.** $y = -3(x + 1)^2$ down **5.** $x = y^2 - 7y + 8$ <u>right</u> **6.** $y = -2x^2 + x + 3$ <u>down</u> **7.** $x = -(y + 2)^2 + 6$ **left 8.** $y = 4x^2 - 1$ **up**
- 9. Given the equation of the parabola $y = x^2 8x + 7$, answer the following:
- a. Find the axis of symmetry using the Axis of Symmetry Formula.

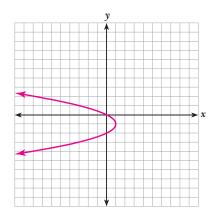
- x = 4
- **c.** Find four other points on the graph.

Possible answers: (2, -5), (3, -8), (5, -8), (6, -5)

- **b.** Identify the vertex.
 - (4, -9)
- **d.** Graph the parabola.

(1, -1)

10. Given the equation of the parabola $x = -y^2 - 2y$, answer the following:


- **a.** Find the axis of symmetry using the Axis of Symmetry Formula.
- **b.** Identify the vertex.

y = -1

lest
BestQu
2003
0

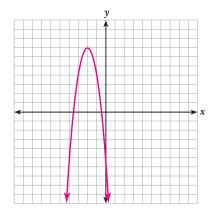
- **c.** Find four other points on the graph.
- **d.** Graph the parabola.

Possible answers: (-3, -3), (0, -2), (0, 0), (-3, 1)

11. Given the equation of the parabola $y = -3x^2 - 12x - 5$, answer the following:

a. Complete the square to write the equation in the form $y = a(x - h)^2 + k$.

 $y = -3(x + 2)^2 + 7$


c. Find four other points on the graph.

Possible answers: (-4, -5), (-3, 4), (-1, 4), (0, -5)

b. Identify the vertex.

(-2, 7)

d. Graph the parabola.

12. Determine whether each statement is true or false.

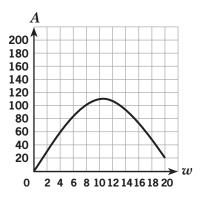
a. The graph of $y = x^2$ is narrower than the graph of $y = 2x^2$.

False

c. The graph of $x = 4y^2 - y$ is wider than the graph of $x = y^2 + 3y$.

False

© 2003 BestQuest


b. The graph of $x = -2y^2$ is narrower than the graph of $x = -y^2$.

True

d. The graph of $y = -x^2 + 6x - 1$ is wider than the graph of $y = 2x^2 - 5x + 4$.

True

13. A rectangular yard is to be enclosed using42 feet of fencing. The graph representsthe width and area of this yard.

b. Using the perimeter equation in the previous problem, solve for *l* in terms of *w*.

l = 21 - w

w = 10.5 feet

- **d.** Using the graph, estimate the width that would maximize the area of the yard.
- **a.** Using *w* for width and *l* for length, write an equation for the perimeter of the yard.

2l + 2w = 42

c. Write an equation to find the maximum area of this rectangular yard in one variable. Put the equation in standard form.

 $A = w(21 - w); A = -w^2 + 21w$

e. Estimate the maximum area of the yard.

about 110 square feet

- **14.** The vertex of the equation $y = -4x^2 + 16x 1$ is ______
 - **a.** (0, -1) **b.** (2, 1) **c.** (2, 15) **d.** (4, 11)
- **15.** The height of a leaf falling from a tree is modeled by the equation $h = -16t^2 + 64$, where *h* is in feet and *t* is in seconds. How long did it take for the leaf to hit the ground?

a. one second **(b.)** two seconds **c.** three seconds **d.** four seconds

Answer the following questions:

- 16. Compare the graphs of $y = \frac{1}{2}x^2 + 3$ and $y = -\frac{1}{2}(x + 3)^2$. Both equations have the same width because $\left|\frac{1}{2}\right| = \left|-\frac{1}{2}\right|$. The graph of $y = -\frac{1}{2}x^2 + 3$ has a vertex of (0, 3) and axis of symmetry x = 0, while the graph of $y = -\frac{1}{2}(x + 3)^2$ has a vertex of (-3, 0) and an axis of symmetry x = -3. The graph of $y = \frac{1}{2}x^2 + 3$ opens up because $a = \frac{1}{2}$ is positive, while the graph of $-\frac{1}{2}(x + 3)^2$ curves down because $a = -\frac{1}{2}$ is negative.
- **17.** Give an example of a quadratic relation that is *not* a function.

Equations of the form $x = ay^2 + bx + c$ and $x = a(y - k)^2 + h$ are not functions.

© 2003 BestQuest