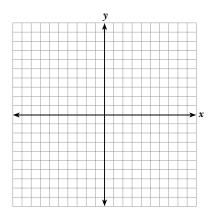
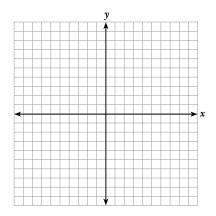
DIGITAL

	Module Test B	Module 14
Det	ermine the direction each parabola opens	by inspection.
1.	x = 2y ²	2. $y = (x + 3)^2 - 4$
3.	$x = -5(y + 3)^2 - 4$	4. $y = -3(x + 1)^2$
5.	$x = y^2 - 7y + 8$	6. $y = -2x^2 + x + 3$
7.	$x = -(y + 2)^2 + 6$	8. $y = 4x^2 - 1$
9.	Given the equation of the parabola $y = x^2$	-8x + 7, answer the following:
a.	Find the axis of symmetry using the Axis of Symmetry Formula.	b. Identify the vertex.
c.	Find four other points on the graph.	d. Graph the parabola.
		-
10.	Given the equation of the parabola $x = -y$	$r^2 - 2y$, answer the following:
a.	Find the axis of symmetry using the Axis of Symmetry Formula.	b. Identify the vertex.


Œ

 \oplus

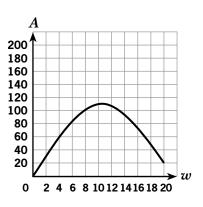
UDM14MTB	61519	8/7	/03	12.22 PM	Page 244	(Black plate)


DIGITAL

- **c.** Find four other points on the graph.
- d. Graph the parabola.

- 11. Given the equation of the parabola $y = -3x^2 12x 5$, answer the following:
- **a.** Complete the square to write the equation in the form $y = a(x h)^2 + k$.
- **b.** Identify the vertex.

- **c.** Find four other points on the graph.
- d. Graph the parabola.


12. Determine whether each statement is true or false.

- **a.** The graph of $y = x^2$ is narrower than the graph of $y = 2x^2$.
- **b.** The graph of $x = -2y^2$ is narrower than the graph of $x = -y^2$.
- **c.** The graph of $x = 4y^2 y$ is wider than the graph of $x = y^2 + 3y$.
- **d.** The graph of $y = -x^2 + 6x 1$ is wider than the graph of $y = 2x^2 5x + 4$.

© 2003 BestQuest

Module 14

 A rectangular yard is to be enclosed using
42 feet of fencing. The graph represents the width and area of this yard.

- **a.** Using *w* for width and *I* for length, write an equation for the perimeter of the yard.
- **c.** Write an equation to find the maximum area of this rectangular yard in one variable. Put the equation in standard form.
- e. Estimate the maximum area of the yard.
- **14.** The vertex of the equation $y = -4x^2 + 16x 1$ is _____.

a. (0, -1) **b.** (2, 1) **c.** (2, 15) **d.** (4, 11)

15. The height of a leaf falling from a tree is modeled by the equation $h = -16t^2 + 64$, where *h* is in feet and *t* is in seconds. How long did it take for the leaf to hit the ground?

a. one second b. two seconds c. three seconds d. four seconds

Answer the following questions:

16. Compare the graphs of $y = \frac{1}{2}x^2 + 3$ and $y = -\frac{1}{2}(x + 3)^2$.

17. Give an example of a quadratic relation that is *not* a function.

© 2003 BestQuest

Module 14

245

- **b.** Using the perimeter equation in the previous problem, solve for *l* in terms of *w*.
- **d.** Using the graph, estimate the width that would maximize the area of the yard.

 \oplus

 \oplus

DIGITAL