DIGITAL

	Module Test	Madula 1
	module lest A	
)et	ermine the direction each parabola opens	by inspection.
1.	$y = 2x^2 - x - 3$	2. $y = -(x + 3)^2 + 4$
3.	$x = -3(y + 1)^2$	4. $y = (x - 5)^2 + 1$
5.	$x = 4y^2 + 4y - 15$	6. $x = -y^2$
7.	$x = 6(y - 1)^2 + 7$	8. $y = -3x^2 + 1$
9.	Given the equation of the parabola $y = 2x$	2 + 4x - 1, answer the following:
a.	Find the axis of symmetry using the Axis of Symmetry Formula.	b. Identify the vertex.
c.	Find four other points on the graph.	d. Graph the parabola.
		y
.0.	Given the equation of the parabola $y = -x$	2 + 3x – 2, answer the following:
a.	Find the axis of symmetry using the Axis of Symmetry Formula.	b. Identify the vertex.

 \oplus

 \oplus

	UDM14MTA 61519	8/7/03	12:23 PM	Page 240	(Black plate)
--	----------------	--------	----------	----------	---------------

DIGITAL

- **c.** Find four other points on the graph.
- d. Graph the parabola.

- 11. Given the equation of the parabola $x = y^2 6y + 1$, answer the following:
- **a.** Complete the square to write the equation in the form $x = a(y k)^2 + h$.
- **b.** Identify the vertex.

- **c.** Find four other points on the graph.
- d. Graph the parabola.

12. Determine whether each statement is true or false.

- **a.** The graph of $y = 3x^2$ is narrower than the graph of $y = x^2$.
- **b.** The graph of $y = 2x^2$ is narrower than the graph of $y = -2x^2$.
- **c.** The graph of $x = -3y^2 + 2y 1$ is wider than the graph of $x = -y^2 + y + 5$.
- **d.** The graph of $x = 0.5y^2 + 6y$ is wider than the graph of $x = y^2$.

© 2003 BestQuest

Module 14

240

DIGITAL

13. A rocket is fired into the air from atop a building; its height is given by the equation $h = -16t^2 + 96t + 25$, where *h* is the height in feet and *t* is time in seconds, as shown by the graph.

- a. What was the height of the building?
- **b.** At what velocity was the rocket fired?
- **c.** Using the graph, when does the rocket reach its maximum height?
- **d.** Find the exact maximum height of the rocket algebraically.
- e. Using the graph, approximately how long was the rocket in flight?
- **14.** The vertex of the equation $y = -3x^2 + 6x 4$ is _

a. (0, -2) **b.** (1, -4) **c.** (1, -1) **d.** (2, -4)

- **15.** The height of a dart thrown at a dartboard is modeled by the equation $h = -16t^2 + 6t + 5.5$, where h is in feet and t is in seconds. About how high was the dart's maximum height?
 - **a.** 5.5 feet **b.** 6 feet **c.** 6.6 feet **d.** 7 feet

Answer the following questions:

16. Compare the graphs of $y = 3(x - 1)^2 + 2$ and $y = -(x - 1)^2 + 2$.

17. Explain why the quadratic relation $y = 2(x - 1)^2 + 3$ is a function.

Module 14	241	

 \oplus

 \oplus

DIGITAL