

Fill in the blanks with the terms that best complete each statement.

- 1. <u>Factoring</u> a polynomial is rewriting the polynomial as the product of simpler expressions.
- 2. The product of conjugates is also called the product of the sum and difference.
- **3.** The constants in the binomial factors of the trinomial $x^2 + bx + c$ must have a

product of c and a sum of b.

4. A polynomial is factored **<u>completely</u>** when each factor is either a monomial or a prime polynomial.

Are the following statements true or false?

5. When factoring a polynomial, the first thing to be done is to factor out the greatest common factor if there is one.

True

7. When factoring by grouping, the terms of the polynomial never have to be rearranged.

False

9. (2x - y) and (x + y) are conjugates.

False

11. A polynomial may require factoring by more than one method.

True

6. The common factor of a polynomial expression can be a monomial.

True

8. For any real *a* and *b*, $a^2 + b^2$ can be factored.

False

10. The factorization of $a^2 - 2ab + b^2$ is (a + b)(a - b).

False

12. $\frac{x-5}{5}$ is equivalent to x.

False

Module 12

Choose the best response to each of the following:

13. According to the Distributive Property, $a(b + c) =$					
	a. ab + c	b , ab + ac	c. <i>b</i> + <i>ac</i>	d. abc	
14. Factoring the Difference of Two Squares is the reverse of the					
	a. Distributi	ive Property of Conjugates		b. FOIL Methodd. Grouping Method	
15. Factoring by grouping is the reverse of the					
	a. Distributi c. Product	ive Property of Conjugates		 b. FOIL Method d. Guess-and-check Method 	
16. Find the greatest common monomial factor of $4x^2 - 7x^5$.					
	a. <i>x</i>	b. <i>x</i> ²	c. X ⁵	d. There is no common factor.	
17. Find the greatest common monomial factor of $9x^3 + 6xy^2 - 4y$.					
	a. 2 <i>y</i>	b. 3x	c. 6 <i>xy</i> ²	d. There is no common factor.	
18. Which of the following cannot be factored by grouping?					
(a) $x^2 + 9$ b. $3x^2 + x - 10$ c. $ar + as + br + bs$ d. $9y + 3y^2 - 30$					
19. When grouped, $5b + 5c - ab - ac$ can be correctly written as					
	a. (5b + 5	c)+(ab + ac) b .	(5b + 5c) - (ab)	- ac) (5b + 5c)–(ab + ac)	
20. Given that the factors of $x^2 + bx + c$ are $(x + r)(x + s)$, if $b < 0$ and $c > 0$, then					
	a. r>0, s	> 0 b. either	r < 0, $s > 0$ or	r > 0, s < 0 (c) $r < 0, s < 0$	

21. Factor, if possible.

a. 16p + 8	b. $8x^2 - 6x - 5$	c. $q^2 - 144$
<u>8(2p + 1)</u>	(4x - 5)(2x + 1)	(q + 12)(q - 12)
d. $y^2 + 11y + 10$	e. $4x^3y^2 - 6x^4y + 8x^3y^3$	f. 25 – <i>a</i> ²
(y + 1)(y + 10)	$2x^3y(2y - 3x + 4y^2)$	(5 + a)(5 - a)
g. $a^2 + ab - 4a - 4b$	h. <i>n</i> ² − <i>n</i> − 42	i. $6w^2 + 13w + 6$
<u>(a + b)(a - 4)</u>	(n + 6)(n - 7)	(3w + 2)(2w + 3)
j. x ² + 81	k. $6y^2 + 7y - 10$	I. $3a^2 + 6a - 4$
prime	(6y-5)(y+2)	prime

© 2003 BestQuest

22. Factor completely.

a. $x^3 - 7x^2 - 4x + 28$ (x - 7)(x + 2)(x - 2)**b.** $5a^4 - 80$ $5(a^2 + 4)(a + 2)(a - 2)$

c. $3x^3 - 24x^2 + 36x \frac{3x(x-2)(x-6)}{(x-6)}$ **d.** $24y^3 - 54y \frac{6y(2y+3)(2y-3)}{(x-6)}$

23. Divide by factoring.

a.
$$\frac{x^2 - 49}{x + 7} \frac{x - 7}{y - 2}$$

c. $\frac{3y^2 - 9y + 6}{3y - 3} \frac{y - 2}{y - 2}$

b.
$$\frac{6p^2 - 11p - 10}{3p + 2}$$
 $\frac{2p - 5}{\frac{q + 4}{2}}$
d. $\frac{q^2 + 10q + 24}{2q + 12}$

Answer the following questions.

24. List the three steps, in the correct order, for factoring by grouping.

To factor by grouping, form groups so that each group has a common fac-

tor, factor the greatest common monomial factor out of each group, and

factor out the greatest common binomial factor from the resulting terms.

25. List the types of factoring studied in this module. Briefly describe how a candidate for each type of factoring would be recognized.

The types of factoring and points of recognition are:

- Greatest Common Factor; any common factors in polynomial of any size
- Grouping; four-term polynomial or quadratic trinomial that can be

rewritten as a four-term polynomial

Difference of Two Squares; binomial with one perfect square subtracted

from another perfect square

- Factor Pair List; quadratic trinomial
- Guess-and-check; guadratic trinomial